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We present a method to measure N-"H dipolar/*N CSA longi-
tudinal cross-correlation rates in protonated proteins. The method
depends on the measurement of four observables: the cumulative
proton—proton cross relaxation rates, the N R, relaxation rate, the
multiexponential decay of 2N,HY spin-order, and multiexponential
buildup of 2N,HY spin-order. The *N-"H dipolar/*N CSA longitu-
dinal cross-correlation rate is extracted from these measurements by
an iterative fitting procedure to the solution of differential equations
describing the coupled relaxation dynamics of the z-magnetization of
the ®N nucleus, the two-spin-order 2N,HJ, and a two-spin-order
term 2N,H? describing the interaction with remote protons. The
method is applied to the microbial ribonuclease binase. The method
can also extract longitudinal cross-correlation rates for those amide
protons that are involved in rapid solvent exchange. The experiment
that serves for extracting proton—proton cross-relaxation rates is a
modification of 3D “N-resolved NOESY-HSQC. The experiment
restores the solvent magnetization to its equilibrium state during data
detection for all phase cycling steps and all values of NOE mixing
times and is recommended for use in standard applications as
well.  © 2000 Academic Press
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networks occurring in proteins, cross-correlation experimen
can be designed so that the relaxation can be described witl
high degree of accuracy as a two-spin system. In fact, Ruch
cross correlations “isolate” a restricted set of relaxation mecl
anisms out of a complex relaxation matrix. These propertie
thus allow detailed insight into the structure and dynamics ¢
labeled proteins, and recent years have seen a flurry of su
measurements, many of which measBrdnterference effects
of CSA and dipolar interaction2{9).

Recently interest has arisen to also meafurinterference
effects of CSA and dipolar relaxation, mostly to obt&jR,
ratios for the®N—"H CSA-DD cross correlations in proteins.
Such ratios should allow a valuable estimate of the spectr
density functions independent 6N CSA tensor values and
conformational dynamicsRy,) relaxation. As described early
by Torchia and co-workersl(), R, interference effects are
much more difficult to measure thdy interference rates. For
instance, the®N-"H dipolar/°N CSA longitudinal crosor-
relation as measured from the time-dependence of,F2N
order is strongly affected by crosslaxation of the *H spin
with other *H spins, which is for proteins a dominant effect.
(Why this does not influend®, cross correlations as measurec

The importance of internal motions for the biochemicdfom the time-dependence of 2N, coherence is recalled in
functions of proteins has been well documented. Modern NMietail in Refs. 8) and @)). In other wordsR,; cross correla

techniques, capable of measuring the relaxation rates of vdidns do not fully isolate a restricted set of relaxation meche
ous spin coherences for many sites in a protein under physiisms and cannot be measured in straightforward manner
logical conditions, have provided much of the available infospin-dense systems such as proteins. Moreover, NH moiet
mation about such motions (for a review, see R&)).(Most for which the amide protons are in relatively rapid exchang
NMR studies have focused on individual spins such as tfie-s time scale) with the solvent can also not be described |
backbone amide nitroger’l) and on the dipolar (DD) inter a simple two-spin system.

action with its attached proton. Recently, many studies haveHere we present a theoretical description of the relaxatic
appeared that measure different cross-correlated relaxatimhavior of a three-spin system which serves as a model for t
rates. Cross correlations measure the interference of two rel&—"H system in contact with anothéld relaxation and mass
ation mechanisms and give insight into the existence of coriexchange bath. On the basis of the theoretical investigation, \
lated motions of vectors, into local structure, and into theuggest that with the measurement of four observables (t
properties of CSA tensors. Cross correlations also providelividual proton—proton cross-relaxation and exchange rate
powerful tools for measuring dynamical properties, becautiee N R, relaxation rate, the multiexponential 2N; decay,
the theoretical relationship between the cross-correlation ragesl multiexponential 2pH} buildup), it is possible to obtain
and the spectral density functions is simple. This is especiathe longitudinal ®N—'H CSA-DD cross-correlation rates by
the case when interference is measured for transverse reigerative fitting of the latter data according to coupled differ-
ation pathways R,). Even for the complex spin relaxationential equations. Our analysis indicates that relidblecross-
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correlation rates can be measured with this approach for fullshere the normalization constaét= (24x/5)"%; v's are the
protonated proteins while mass exchange mechanisms suclyyaemagnetic ratiosr’s the averaged internuclear distances
amide proton exchange with the solvent are taken into accoijt' and T, second-rank spherical harmonics tensors; N, H
as well. We have applied our procedure with experimental datad H single spin operator<€)’s the Euler angles, ané, the
for the microbial ribonuclease binase (12.3 kDa). external static field. Th¥; () in Eq. [3] is the only remain

Our method, in which théH—"H cross relaxation isnea ing component of Wigner's rotation matrix describing the
sured, complements recent work by Palmer and co-worker®rresponding directions of the CSA or DD interactions in
(112), who propose tattenuatethe ‘H—"H cross relaxation in molecular-fixed frame. The other components are disregard
longitudinal®"N—"H CSA-DD cross correlation by deuterationas usual according to group-theoretical arguments. For the sz
of all nonamide protons, and by Bodenhausen and co-workeifssimplicity we have assumed that all the three CSAs ar
(12) who propose tattenuatethe ‘H—'H cross relaxation by axially symmetric.

off-resonance spin-locking. The longitudinal relaxation behavior of N,"Hand H is
completely described in a space spanned by the basis set {l
THEORY HY, HZ, 2N,HY, 2N,HZ, 2HYH?, 4N,HIHS} of longitudinal

one-, two-, and three-spin orders. The dynamics of individu:

Following Goldman {3) we use the master Eq. [1] forspin orders is dominated by dipolar and CSA autorelaxatio

relaxation in the interaction representation as derived Ipyocessesg). Transfer of population between spin orders o

Abragam (4) to calculate the relaxation behavior of differenthe same rank is governed by dipolar cross-relaxation ar
spin orders in a three-spin system, chemical exchange processas,{). Transfer of population

between spin orders of different ranks is caused by dipola

e CSA (mx°uiv), which we want to obtain, and dipolar/dipolar

at<A> =75 EJ THI[A, Hi(0)], Hi(n) (o = o)}dT,  cross-correlation processes. The differential equations govel

b ing all of these processes are represented by the compl

[1] cross-relaxation/cross-correlation matrix in Table 1, obtaine

by straightforward but tedious algebra. We have neglected :

whereA, o, o, andH; are, respectively, the spin operator whosi1€ zero-quantum terms such asH\', N_H, and HH!
evolution is to be evaluated, the reduced density operator for the dpfifause no spin-locking field was applied during the relaxatic
system, its value at equilibrium state, and the interaction Hanfi€lay. The derived formulas relating the various autorela
tonian between the spin system and the bath responsible for €N, cross-relaxation, and cross-correlation rates to the spe
relaxation of the spin system. Here, Tr indicates taking the traé@! density functions are given in the Appendix; the longitu:
over the spin system. The bar in [1] represents ensemble aver&ijgal cross-correlation rate of interest is given by

We evaluate the dynamics of the spin system consisting of
an amide proton, M amide nitrogen, N,.and e}third proton, oo csa woliBoyuyl
H?, that may represent all other protons, including solvent. The My-niv = 4.3
interaction HamiltoniarH; for this system,

amr3, (o) = o) Py(cos6)I(wy), [4]

where the symbols have their usual meanings. The theoretic
values of all elements of the above matrix were computed f
a three-spin geometry corresponding taoahelical conforma-
tion in deuterated proteins (see Fig. 1), using a correlation tin
87 6.0 ns, which corresponds to that of binase. The values
Y5(Q2') in Eq. [3] were assumed to be 1 in the calculation. Th
spectral density functiod(w) was assumed to berZ(5(1 +
’7?)). The results of this calculation are shown in Tabldt2.
is clear that the complete relaxation matrix for the longituding
spin orders can for this system be approximated, to very go«
[3a] extent, in a block-diagonal form on the subspace$ {HS},
{2HJHZ}, and {N,, 2N,H%, 2N,H?, 4N,H}H?S}. As we cur
rently are interested in dipole/CSA cross correlations, only th
last subspace is relevant and the matrix describing its comple
dynamics can be reduced to a44 size. As described below,
HED = =yl d€ 2 YE(Q)Y, (Quun()THX, Y), W); center our experiments around measuring the creation a
9=z relaxation of 2NH} two-spin order. In such experiments,
[Bb] 4N,HYH? spin order is created as a second-order process or

Hi= HEsa + Hsa+ HESA + HER" + HES® + HER™, [2]

includes CSA interactions for all spinsifsa Hbes andH s
and the DD interactions between any two of the three spi
(H3S", H3E®, andHEL"™), where

+2

1
HCSA 3 ’Yx(‘Tﬁ( - 0'>i)§ E Yg(Q')qu(Q(t))Tg(BO, X)

q=-2

and

+2
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TABLE 1
The Complete Longitudinal Relaxation Matrix for a Three-Spin System N, H", and H?, Accounting for Autorelaxation Rates,
Cross-Relaxation Rates, and Cross-Correlation Rates Based on Dipolar/Dipolar and Dipolar/CSA Interference Effects

Nz HY H2 2NzHY 2NzH? 2HYHS ANZHYHS
Nz Pn OnN-HN ON-HQ nﬁf’&ﬁﬁA nl\[l)?IGI—({:CSQA 0 SRCNANHQ
HY pHN THN_HQ NER_ i 0 NER_FiNHe SER RN KO
HZ? pHo 0 MR8 o MAG v Ho 818 NN HO
ZNZHQ P2nHN SE%SBHQ + oun_e 555:[1\)13“1 HQ T ON-HQ TIIE%S(S)A + nﬁﬁ’iﬁ?@o
2NZH§ P2nHQ Sﬁgiﬁaw HQ T On-HQ nﬁ?gruc}—isﬁ + ﬂﬁgiﬁ?\ﬁHQ
2HHZ Paring MR8 \wo + MAN R
ANZHH? PaNHNHQ

Note.The expressions for these rates are given in the Appendix.

through*H—"H cross relaxation 2MH> — 2N,HZ, followed by the set of Egs. [5] also as the basis for the extraction of tr
(mostly) *H-"H dipolar cross correlation 27 — 4N,H}HY. longitudinal cross-correlation ratgy i in fully protonated

Consequently, when short relaxation times are used in both ffreteins. In such systems every backbone amide proton int
experiment monitoring the decay of 2M; (100 ms) and the acts with many other protons including solvent. The resultin
experiment monitoring the magnetization transfer fromtdl complete cross-relaxation/cross-correlation matrix becom
2N,H7 (400 ms), the amount of 4MzHZ spin order created gpyiously intractable with thousands of terms even for sma
can be neglected and does not contribute to the dynamics of fagteins. We have therefore assumed that the effect of all ot
system. Accordingly, the cross-relaxation/cross-correlation Qyrotons was additive. As a result we replace the prot8rirH

; N o :
namics of the subspace {N2N,Hz, 2N,H} can be described gqq (5] with one pseudo-proton to mimic the effects of all th

?y a 3x 3 matrix or the following closed set of three equaghers “and the, approximates its effective longitudinal-re
ions:

laxation rate.

On the basis of the above theoretical considerations, v
d design the following protocol to obtain the desired longitudina
ZUNLD) = —ppNLt) — Ny(e 9 owing p . git
dt< AV) Pr(N:(1) 2(e0) cross-correlation rategg v The autorelaxation ratg, is

DD-CSA/ 5 1N measured using a standaftN relaxation experiment. The
+ MnZnAn <2HZNz(t)> . . .
cumulative cross-relaxation raten_,0 can be obtained from

d SHNNL(D) = N SHNNL(t the initial decay rates of the diagonals in a 3M-resolved
gt (ZHZN:D) = = (o + Tun-ne) (ZHZN(1)) NOESY-HSQC experiment, as described below. The dynamit
L DD-CsAN N of 2NzH"z decay and 2NzMz buildup is measured with two
M- (N(D) = Nz(eq) experiments. Their multiexponential time profiles are fitte
+ opnepo{ 2HINL(1)) according to Egs. [5] using the appropriate initial conditions
The fitting procedure yields the value fgk°yiv and also the
%QHSNZ(U) — —(pn + pro)(2HIN,(1)) cumulative longitudinal relaxation rajg;e.
+ UHN—HQ<2H2‘NZ(t)>1 (5]

wherep, is the longitudinal relaxation rate of amide nitrogen
(N,), niiuin’ the longitudinal cross-correlation rates measur
ing the interference between the DD interaction of amide
nitrogen with its attached proton and the CSA of amide nitro- IgQ gN

gen with the external field that we wish to obtajs,, the 270A

longitudinal relaxation rate of the second proton®yHand FIG. 1. A three-spin system consisting of an amide nitrog&hl; its
o _ne the longitudinal cross-relaxation or exchange rate @#lence-bonded amide protofH('), and another proton'i®) in a-helical
two protons. The autorelaxation rate of the tWO-Spin-ordé?ﬂformation'The distances shown here betweerMand*H® and between

N L and'H® were the averages of 10 such distances in 0.8-A resolution X-ra
2N,Hz should bepy + pw. However, we have replaced it Wlthstructure of Crambian (PDB code cbn), respectively. TH& was the proton

pn + ow-ne because for large biomolecules the theoreticgbsest to both the amidéN and *H" in the helical regions of deuterated
value ofpyw is very close to therw e Value. We have adopted proteins.
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TABLE 2

COMMUNICATIONS

The Auto Longitudinal Relaxation Rates of One-Spin, Two-Spin-Order, and Three-Spin-Order and the Cross-Relaxation
and the Cross-Correlation Rates of a Three-Spin System as Shown in Fig. 1

Nz HY H? 2NzH} 2NzH? 2HYHZ ANZHYH?
Nz 2.60 0.06 <0.001 -2.01 0.07 0 -0.14
HY 0.99 ~0.88 0.01 0 —0.008 0.008
H? 0.90 0 0.001 -0.007 —0.002
2NzH) 3.45 -1.02 0.008 0.06
2NzH? 3.50 0.06 -2.02
2HYH? 0.12 0.02
4NZHYH 2.57

Note. The calculations were based on the following vallgs= 500 MHz (11.74 T)7. = 6.0 ns,Acy, = 170 ppm (CSA of amide nitrogetiN, assumed
to be axially symmetric)Ao,, = 10 ppm (CSA of amide prototH, assumed to be axially symmetric). The relative large values are shown in bold for longitudir
italic for cross relaxation between protons, and bold italic for cross correlation between DD and CSA of amide nitrogen and proton. The Units are s

APPLICATION pulse sequence shown in Fig. 2B. No RF pulses were appli
during the relaxation delay. The longest relaxation delay wze

NMR Experiments set to 400 ms. These buildup curves cannot be represented

All spectra were acquired on a Bruker AMX500 NMRSIngle equnentials and are fitte.d according to Eq;. [5].
spectrometer using 0.9 mNfN-labeled binase in 20 mM The longitudinal cross relaxatiof o of one amide pro
sodium acetate with 90% 4 and 10% DO, pH 5.2. The ton with all of its neighbors, including amide proton exchange

resonance assignments were extended from the literatgye (€20 be measured from the initial decay of the diagonal peaks
The longitudinal autorelaxation raje, of amide nitrogen 2 carefully aranged 3D°N-resolved NOESY-HSQC experi

(**N) was measured with a standard 2D heteronuclear NMRENt (Fig. 2C) as a function of the NOE mixing tim,, as
experiment using inversion recoverg0j. A train of 180° follows. Generalizing the Solomon equation for the amid

pulses (5-ms delay between two consecutive ones) was appREgon H' that cross relaxes with many protons &hd ex

during the relaxation delay to eliminate the magnetizatidri'anges with the solvent P, one has, neglecting proton-

transfer from Nz to 2MHY with raten°.S3*, comparable tp, ~ Proton cross-correlation effects),

(Table 2). Consequently, the decay curves for different resi-
dues can be fitted to single exponentials, the results serving asiH}(r,,) ox N N
a fixed parameter for Egs. [5]. T dr, | thHwO + E prvp]tHz (Tn) — Hz(eq)}
The decay of longitudinal two-spin-order 2N} for the '
individual residues of binase was monitored by the pulse
sequence shown in Fig. 2A. No additional pulses were applied
during the relaxation delay. The longest relaxation delay was
set to 100 ms. These decays cannot be fitted to single expo-
nentials and are fitted according to Egs. [5].
The magnetization transfer from Nz to 280’ by ni°w" where the rate,y and oy are the autorelaxation and
for the individual residues of binase was monitored by theross-relaxation rates due to dipolar interactions between spi

+ E O'HN,Hi{Hiz(Tm) — Hy(eq}

+ Kih ot Hy (1) — H(eq)}, (6]

FIG. 2. (A) Pulse sequence for monitoring the decay of two-spin-order 2zNarrow and wide bars denote 90° and 180° hard pulses, respectively. Of
bars indicate solvent-selective pulses. Lower bars represent spin-locking pulses of 1.0 ms. All pulses were applied withniéssaspecified otherwise. A
composite 180° pulse (99-180x—90°y) was applied during th&N evolution. The delays were tuned for the relaxation properties of binase as fotlpws:
2.55 ms and T= 2.67 ms. The phase cycling was; = vy, Yy, =Y, =V; &, = X, X, X, X, =X, =X, =X, —X; ¢3 = X, Y, —X, —VY; receiver= X, —X, —X,

X, =X, X, X, —X. States—TPPI was applied ¢ to achieve quadrature detection in the indirect dimension. The spectral widths were 8333 Hz for protons
1900 Hz for™N, respectively. Heteronuclear decoupling during data acquisition was achieved with a Waltz-16 composite pulse scheme. The WATEF
scheme was used to suppress the solvent resonaBcelbie N evolution could also have been measured as shown in (B). The time points for the relaxa
delays were 10, 15, 20, 30, 50, 75, and 100 ms. The number of scans was 32 per FID. (B) Pulse sequence for monitoring the magnetization transfe
to 2NzH'z. The symbols have the same meaning as in (A) except for the following. The phase cycling,wasx, —x; ¢, = X, X, X, X, X, X, X, X, —X,

=X, =X, =X, =X, =X, =X, =X; ¢3 = X, X, Y, Y, =X, =X, =Y, —V; s = VY; receiver= X, —X, —X, X. States—TPPI was applied &g to achieve quadrature
detection in the indirect dimension. The time points for the relaxation delays were 50, 75, 100, 150, 200, 300, and 400 ms. The number of scans wa:
FID. (C) Pulse sequences for the determination ofghevalues, which correspond to the cumulative amide proton cross-relaxatiorrrates. The symbols
have the same meaning as in (A) except for the following. Prior to the gradient G3, four solvent-selective square 45° pulses of approximatesch00
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(indicated by hatched boxes) were applied to restore the “water-up” condition.2.75 ms.d; = X, X, =X, =X; ¢, =Y, ¢35 = ds = =Y, =YV, Y, Y; ¢5 =
X, —X; receiver= x, —X, —X, X. States—TPPI was applied #8 and ¢ to achieve quadrature detection in the indirect dimensions. The phase prograas
incremented by 180° for each 9@, States—TPPI incrementation, and prografnsand ¢, were incremented by 180° for every two 90° States—TPP
incrementations o, to restore water-up conditions. The gradients G1, G2, G3, G6, and G7 werg, 12, 40, and 40 G/cm, respectively. The gradients G¢
and G5 are optional and serve to suppress radiation damping forfdreyolution times, but were not used in this study. The defyand §,, together with
the 7 pulses in the indirection evolution times, serve to suppress first-order phase shifts and were set to the initiatd&Rym-pulse width and initial delay

+ 'H m-pulse length, respectively. The time points for the relaxation delays were 10, 15, 20, 30, 50, 75, and 100 ms. The number of scans was 16
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H" and H, respectively, an& i ,,,o the amide-proton—solvent peak decay profiles were fitted with a single exponential func
exchange rate. tion, yielding the desired sum of cross-relaxation and exchant
The initial dynamics of diagonal peaks {Hin NOESY rates, the results serving as a fixed parameter in Egs. [5].
spectra corresponds to that of selectively inverted resonanceBetails describing further experimental conditions and dat
{H"}, with all other magnetizations {H at their equilibrium acquisition parameters for all experiments are given in th
values (7). Accordingly, for small values of the NOE mixing figure legends. All data were processed and analyzed with t

time, we have {r, ~ 0) — H(eq) = 0, and consequently, program NMRPipe 19).
no contribution of the second term of Eq. [6]. If the NOE
experiment is arranged such that the water signal behaves likee Iterative Fitting Procedure

any other proton, i.e., that it is not saturated and not affected by ) o
radiation damping, it can also be considered at its equilibrium 1 N€ iterative fitting procedures were developed to extract tf

value, H® (1, ~ 0) — H'*°(eq) = 0, and consequently the Unknown longitudinal relaxation raig, of the pseudo-proton

third term of Eq. [6] can also be neglected. Thus one has tif and the longitudinal cross-correlation rafg® ", First, po

the initial decay of any diagonal peak is described by a singléS estimated fro_m the best_ fit pf the solution of Eq. [5] to tr_u
exponential with the rate constakf} .o + 3 puvs. In the data of the ﬁxper_lment monitoring the_qlecay of the two-spir
large molecule limit, the autorelaxation rajes, and cross- Order 2NH; using the initial Cond|.t|onsQ {Nz(0)= 0;
relaxation ratesr . are equal and opposite. Accordingly the?NzHz(0) = the measured initial value; 2Mz(0) = 0}. The
cross-relaxation ratew_o in Eq. [5] is equal to— Ry, the three equations in5j were solved numerically with the Pro-

initial decay rate of the diagonal of the NOESY experimentdram Mathematica 3.0 (Wolfram ReseD%[(éQz' The fit was pe
formed by exhaustively varying, and ny_yav , first within a

large range and then gradually narrowing the range down st
by step until the precision was equal to or better than th
experimental uncertainties of the original experimental dat

To obtain these conditions, a NOESY experiment was gWe found that the fit was very sensitive to the values of th
signed such that no presaturation was used and such thatGulative autorelaxation ratgs, (see Results and Discus

solvent signal behaves as any other proton signal (see Fig. 28§n)- However, this fit was not very sensitive to the values

The latter is achieved by applying two weak gradients witifi€ Cross-correlation ratgy-". N o
opposite signs during the NOE mixing time, preventing radi- N contrast, we found that the fitting to the experimen
ation damping, but maintaining coherence. It was assured tfNitoring the magnetization transfer from Nz to 2N was

Rp = —oun_pe = KEXN,HQO_E OHNHi- [7]
i

water is in+z during detection irespective of the phasecyclin§ery Sensitive to the value of the cross-correlation v,
by always restoring the solvent magnetizationita prior to @S expected, but_ much less so to the value of the autorela_xan
the fast-HSQC sequenck), using a sequence of four waterat€ po- Thus, withp, values as known parameters obtaine«
selective /4 pulses that are phase cycled to cumulativefjom the first fit, the cross correlation ratgs°wie could be
generate 0/2(y), m(y), and 37/4(y) pulses as needed to()bta'r,‘“ed to high precision by best fit of Eq. [5] to the Nz
follow the phase and quadrature cycling of the first proto%NZHé experiment with the initial conditions {2M7(0) = 0;
pulse of the sequence. This single experiment yields excellézHz(0) = 0}. Here, the |r:)|g[aclsl/alue for Nz(0) was exhaus
water suppression, with “water-up” for all practical NOE mixlively varied together withyy =y _ _
ing times in the range of 10200 ms, and is also recommended NS two-step fitting procedure was tested with data simt
for use in standard applications. Proton zero-quantum cohl@t€d numerically according to Egs. [S] with known parameter
ences of the type (2S, — 21,S,) will be present after the short and was found to give very accurate res_ults. In fact, it wa
NOE mixing time, and cannot, as is well known, be phaéBUCh more robustthanasmu_lated annealm_g program thatw
cycled out or purged by the gradient after the selective puls&S0 Written by us to accomplish the same fitting procedure |

The NOESY-FHSQC sequence converts these coherences fhf0re automatic fashion.
ZZ-orders at acquisition time that do not contribute to the

diagonal signal as can be verified by standard product operator RESULTS AND DISCUSSION
algebra. Accordingly, no disturbance of the single-exponential
decay behavior of the diagonals occurs. We have applied the iterative fitting procedure detaile

As our current interest is to only monitor the initial decaybove to binase, a microbial ribonucleask,12.3 kDa. Nine
rate of the large diagonal resonances, 3D datasets of excelteen well-resolved peaks were picked for testing the protocc
sensitivity and resolution could be acquired in as little as 10The resulting cross-correlation rates are shown in Fig. 3C. Tt
each, using an older 500-MHz system. As such, the acquisitiaverage cross-correlation rate at 11.7 T is 2.3, svhich
of a 3D o relaxation series with NOE mixing times of 10, 15compares favorably with the computed rate of 2.0(Fable 2)
20, 30, 50, 75, and 100 ms took as long as any standard @8ing standard parameters and a value of 6.0 ns for the ro
relaxation experiment. After 3D processing, the initial diagongéibnal correlation time obtained from routinéN relaxation
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FIG. 3. A. (a) Representative experimental data of t¢ T, experiment, using cross-correlation suppressif), for residue R86 of binase and the fit to
a single exponential decay curve. Thaxis is the relaxation time in seconds; fhaxis is the relative peak intensity. (b) The fitted(R,) values of the amide
nitrogen®N for 19 residues of binase. B. (a) Representative experimental data of the relaxation infher@Bolved NOESY experiment (Fig. 2C) for residue
R86 of binase and the fit to a single exponential decay curve xIdds is the mixing time in seconds; tlyeaxis is the relative peak intensity. (b) The fitted
pun values of the amide protons for 19 residues of binase. C. (a) Representative experimental data of the experiment (Fig. 2B) residue R86 of binas
monitors the magnetization transfer from Nz to"2MNz and the fitting to the solution of the Eq. [5] by the iterative procedure. (b) The fitted cross-correlat

ratesmn v for 19 residues of binase.

experiments. The measured cross correlation rates vary largatlyibuted to statistical errors in the experimental observabl
in the range of 1.6—2.8'$and do not correspond to patterns iror errors in the fitting procedure. Our results are complemer
either hydrogen bonding or secondary structure. As is detailedy to those of many other studies by several groups reportil
directly below, the large range of values observed cannot eterminations of different cross-correlation rates. For mar
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such experiments, larger variations than expected are observed® ‘ ‘ - —
as well. The explanations for this phenomenon vary froma™:
ascribing a large range to the parameters of the static CSA3-5‘; s
tensors §), variations in geometry2(), anisotropic local mo-

tions 1), and, most recently, dynamic variations in the CSA 3¢ R . LI
tensors and distances upon anisotropic local mo2&h @Anal- N

ysis of the current data in structural and dynamical terms will 25/ . . . =

thus have to await further developments of these theories. The =~ *
purpose of the present paper is only to provide a robust2o: = . - .
protocol to measure the longitudinal cross-correlation rates. In |
the following we address the error propagation in the proce- 1-5‘
dure. Subsequently we compare our method with that recently 2\0
published by Kroenket al. (11).

40 60 80 100
Residue Number

Errors Analysis FIG. 4. The fitted cross-correlation rateg v of 19 residues of binase
as obtained by our iterative protocol (filled squares) compared with those |
Errors in py. The pulse train is the standaftN p mea  determined with the protocol described by Kroeekal. (11) (filled triangles).
surement does not eliminate the magnetization transfer from
Nz to 4N,HYH? by dipole/dipole cross correlation. However,
the rate of such transfeBy’yivwe can be calculated to bethe final computedi2°y$s” value. It was observed that the error
relatively small, about 5% gfy with the presence of one otherin p, is dominated by potential variations in the initial value of
proton (see Table 2), and should not affect the early parts of tie 2NzH'z magnetization. We estimate on this basis an errc
relaxation curve. Fitting such a curve to a single exponential p, as large as 25% from the first step of the fitting procedure
would yield an error inpy of at most 2.5%. However, a 25% error ip, introduces only a 2% error in the
The uncertainty irpy due to the noise in the original exper desired cross-correlation ratgq"yax" in the second fitting
imental data is small. The average signal-to-noise ratio wascedure. To explain this more intuitively, we note that
about 100/2. Since the autorelaxation rgigsvere extracted affects the time dependence of 2Nz-bnly indirectly through
by best fitting of 12 data points to single exponential decayinge decay of the 2Nzf# term (see Egs. [5]). In particular, for
curves, the uncertainty ipy is estimated to be less than 0.8%the 2NzH'z decay experiment, the 2N2& term has to be
Combined with the error in neglecting tg°ite terms, we created first from 2NzRz before it can contribute “back” to
estimate that the error ipy is 3%. 2NzH"z, a process that is unimportant if the relaxation time i:
Errors in owv_ne. The NOESY diagonal peaks were als®nly 100 ms as used. The influence of therdlaxation is even
obtained with an average sensitivity of 100/2. With a fit to fivgiore remote on the transfer experiment from Nz to 2RzH
data points the experimental uncertaintyoif o is less than (400 ms); it can be classified as a secondary to second:s
1.0%. Potential sources of systematic errors in obtaining teffect: first, 2NzHz is created from Nz, then 2NZH is
cross-relaxation rates are discussed in the theoretical sectiofiégted from 2NzFz. Only 2NzHz is directly affected by,
this paper. We note that the decay curves cannot be distifie largest computational error in the cross-correlation ra
guished from single exponentials even when extended 6 n Was caused by the uncertainties in the initial values ¢
100-ms mixing times; nevertheless we have only fitted up to $ used as the input parameter in the second fitting procedu
ms, to maintain the initial rate approximation. We estimate thét reasonable estimate of 5% error in the initial value of N:
the sum of experimental and systematic error in the derivépuld introduce 5% error img°yii”. In total, we thus estimate
values forow. . is well below 10%. that the uncertainties imy°y5v" amount to 15% on average.
DD-CSA

Errors in the fitted parameters, and %S The exper These cumulative experimental and computational uncertai

imental uncertainties in the experiment monitoring the decayt(b?s can thus n_ot account for the large spread of cross corre
2NzH'z was about 100/1 for the initial time point and 10073100 rates obtained50%).

for the last of seven time points. The signal to noise ratio in t . .

transfer experiment Nz t(lc)J 2NZH was gn average 100/5 fo:t?ompanson with Gther Work
seven time points. The experimental uncertainties of parameAs detailed above in the theoretical background, the rela:
ters fitted to these data should thus be reduced/fycom- ation behavior of any spin residing in the complicated networ
pared to the raw individual data points. The computationaf spins, especially in a protonated protein sample, may not |
uncertainties irpy, po, andmy yiv were estimated by sampleapproximated by a two-by-two matrix without introducing
fitting procedures in which the other parameters and obsesubstantial errors. For example, by fitting the experimental da
ables were varied over their known uncertainty ranges. Véé residue R86 of binase to a two-by-two matrix, we obtair

found that a 3% error ipy contributes less than a 2% error irmy°y of 3.32 s*. By contrast, it was found to be 3.10'sy
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TABLE 3 nalized by the fact that the relaxation is not dominated by

DD-CSA

The Difference in Longitudinal Cross-Correlation Rates ny"wiv  single spin but by several other amide protons and mar
as Determined with the Iterative Fitting Procedure Proposed Here  side-chain protons. In that case, magnetization transferred frc

and with the Method Proposed by Kroenke et al. (11) amide proton to such protons rapidly diffuses in the matrix an
Residue APPSR (s) Structure Exchange the process contributes predominantly to the autorelaxatic
terms.
124 1.1 Loop Yes Perdeuteration of the amino acid side chains can of cour
S27 —-0.4 Loop/helix No alleviate some of the multiple spin effects. This method wa
S30 —0.4 Loop/helix Yes  proposed by Kroenket al. (11). However, cross relaxation
A36 -0l Loop No between amide protons, dominantdrhelical segments, and
A45 0.6 Helix/turn No . .
G51 1.0 Beta ves €xchange with solvent cannot be accounted for with such ¢
R61 0.1 Loop No approach. Alternatives to deuteration exist, as cross relaxati
L62 0.5 Loop No between amide and aliphatic protons can be quenched by bic
E72 0.9 Beta Yes  or selective decoupling of the aliphatic proto@8,24. But, as
22(23 g:g ;Z?; m‘(’) above, it is not possible to quench the amide—amide protc
K97 0.9 Beta No cross relaxation with this method. In principle, amide—amid
T98 0.9 Beta No proton cross relaxation can be attenuated strongly in the el
T99 0.2 Loop ° gant approach described by Bodenhausen and co-workayrs (
H101 0.3 Loop No  There,"H-"H cross relaxation is canceled by off-resonatide
éigg’ _g.é tggs No gpin-locking at an average angle of 35.3°. In the large-mole
T106 0.4 Beta No  cule motional limit complete suppression should occur at pre
R109 1.3 Beta ° cisely this angle (NOESY-ROESY cancellation). However

amide proton exchange effects cannot be canceled by t
Note.The column “Structure” characterizes the local structure in the protegbin_mcking schema, while RF offsets make it difficult to mee
binase (G. Dodson, personal communication); the column “Exchange” in(i'he ideal Iocking angle for all resonances simultaneously.

cates whether amide proton exchange on the 100-ms timescale was observe(g . . . .

for this moiety. DDiligAmethoq to obtain the Ion_gltud_lnal cross-correlation rate
 Not Determined; X-ray structure shows H-bonding. nn-nnn , albeit also an approximation, can be used on full
® Not determined; X-ray structure shows solvent exposure. protonated proteins. A drawback is that the data must be fittt
* Not determined; C-terminal residue. carefully to a set of coupled differential equations. This may b

a small price to pay in order to also obtain information or
residues involved in relatively fast amide proton exchange
our iterative fitting procedure. To further explore this experiMany times such residues are located in loop regions which a
mentally, we have measured and computed the longitudirdten the most interesting from a dynamical as well as func
cross-correlation rategy niv for protonated binase accordingtional perspective.
to the protocol described by Kroenkeal.(11). The results are
included in Fig. 4. As is expected for this protonated protein, APPENDIX
these rates do differ substantially from the results obtained with
our method. While we have not been able to find any correla-The various relaxation rate constants in Table 1 were derive
tion between thevaluesof the cross-correlation rates and thgrom Egs. [1]-[3] and are
structure of binase (see above), we do find a substantial cor-
relation between thdifferencesn the rates obtained accordin
to our methods and those as determined by the methodg of v = dRu(63(wn) + 2)(0n — @) + 12)(wy + wy))
Kroenkeet al. (11). As seen in Table 3, the largest differences + dio(6I(wy) + 2(wq — wy)
occur for residues located ifi-sheet and those involved in

2
rapid amide proton exchange. This can be rationalized by the +12)(wq + o)) + Ci8I(wn)

fact that inB-sheet, amide protons are very close to dhpro- pun = din(6d(wy) + 23 (wy — o)) + 12J(0y + o))
tons of the preceding residues (2.2 A); as such the relaxation 5

dynamics of the amide proton is dominated by dipolar inter- + dio(63(wn) + 2)(wy — wg)

action with this single proton. The relaxation behavior is thus +12)(wy + 0g)) + CE6I(wy)

expected to deviate strongly from the isolated spin approxima- s

tion. Large differences are also expected for amide protons in ~ Pre = o(6J(wg) + 2J(wg — wy) + 12](wq + wy))
rapid exchange with the s_olve_nt, where z_itwo-spin description + d2(63(wp) + 23wy — wg)

cannot be a good approximation. The differences appear less

strong for residues im-helices and loops; this can be ratio- +12)(wy + wg)) + C36I(wg)
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ponin = df(83(wy) + 6J(wy) + dig(6J(wy)
+ 23wy — wo) + 12)(wy + wo))
+ dio(6I(wy) + 2(wo — wy)
+ 12)(wg + wy)) + CZ6J(wy) + CZ6J(wo)
panne = dio(63(wy) + 6J(wg)) + dfig(6J(wy)
+ 2J(wy — wo) + 12)(wy + wo))
+ d{u(63(wy) + 2J(wy — wy)
+ 12)(wy + wy)) + CE6I(wy) + C36I(wo)
pamne = dig(6J(wy) + 6J(wq)) + dig(6I(we)
+ 2)(wy — wg) + 12)(wy + wo))
+ d{u(63(wy) + 2J(wy — wy)
+ 12)(wy — wy)) + CE6I(wy) + C36I(wo)
pannnne = din(6J(wy) + 6J(wy))
+ df(6(wn) + 6J(wg))
+ dfo(6(wy) + 6J(wg))
+ C26J(wy) + C36J(wg) + Ci6I(wy)
oy = Aju(12)(wp + o) — 23(0y — o))
on-ne = d3g(12)(wg + wy) — 2J(wg — wy))
ounne = di(12)(0y + o) — 2)(wy — wg))
Ny = 2C\0nP2(C0S Oy ) 6(wy)
Moo = 2Cy0ngP2(COS Oy _no)6I(wy)
NEN-SSR = 2CdyP2(COS Byn_wn) 6I(w4)
N e = 2C10uoP2(CoS By o) 6J(wy)
Nho N6 = 2ColngP2(COS Bho-no) 6I(we)
Nhoinie = 2Co0ugP2(COS e 11g) 6J(w)
S nmmme = 20ydnoP2(C0S Oy i) 6I(wy)
S amme = 20ndhoP2(C0S B0 i) 6I(w4)

8 ho_nhHe = 2dngdHoP2(C0S Ong 1) 6I(wq)

in which
1 po _
dwy = — \@M YHYWET N,
1 po _
dwo= — \£477 Yowhr NS,

1 o _
dyo= — \g% YuYolir Hé,

1
Cn= 18 YnBoAn,

1
Ch= 18 YuBoAn,

1
Co= 18 YoBoAq,

3 2 Te

(wi) - g W;

oy = YnBo, o= yuBy and wq = yoBo.

The various parameters have their usual meanings, that is,
is the permeability of free spackjs Planck’s constant divided
by two timesr, v, is the gyromagnetic ratio for nucleisr

is the distance between nucleandj, B, is the static magnetic
field, A, is the (axial) chemical shift anisotropy of nucleuys
P,(x) = (3x* — 1)/2, 0, ; is the angle between the principal
axis of the CSA tensor of nucleusand the vector between
nucleii andj, 6;_ is the angle between the two internucleal
vectorsij andkl.
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