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We present a method to measure N– H dipolar/ N CSA longi-
udinal cross-correlation rates in protonated proteins. The method
epends on the measurement of four observables: the cumulative
roton–proton cross relaxation rates, the 15N R1 relaxation rate, the
ultiexponential decay of 2NZHZ

N spin-order, and multiexponential
buildup of 2NZHZ

N spin-order. The 15N–1H dipolar/15N CSA longitu-
inal cross-correlation rate is extracted from these measurements by
n iterative fitting procedure to the solution of differential equations
escribing the coupled relaxation dynamics of the z-magnetization of
he 15N nucleus, the two-spin-order 2NZHZ

N, and a two-spin-order
erm 2NZHZ

Q describing the interaction with remote protons. The
method is applied to the microbial ribonuclease binase. The method
can also extract longitudinal cross-correlation rates for those amide
protons that are involved in rapid solvent exchange. The experiment
that serves for extracting proton–proton cross-relaxation rates is a
modification of 3D 15N-resolved NOESY-HSQC. The experiment
restores the solvent magnetization to its equilibrium state during data
detection for all phase cycling steps and all values of NOE mixing
times and is recommended for use in standard applications as
well. © 2000 Academic Press

Key Words: relaxation interference; chemical shift anisotropy;
OESY; proteins; dynamics.

The importance of internal motions for the biochem
functions of proteins has been well documented. Modern N
techniques, capable of measuring the relaxation rates of
ous spin coherences for many sites in a protein under ph
logical conditions, have provided much of the available in
mation about such motions (for a review, see Ref. (1)). Most
NMR studies have focused on individual spins such as
backbone amide nitrogen (15N) and on the dipolar (DD) inte-
action with its attached proton. Recently, many studies
appeared that measure different cross-correlated relax
rates. Cross correlations measure the interference of two
ation mechanisms and give insight into the existence of c
lated motions of vectors, into local structure, and into
properties of CSA tensors. Cross correlations also pro
powerful tools for measuring dynamical properties, bec
the theoretical relationship between the cross-correlation
and the spectral density functions is simple. This is espec
the case when interference is measured for transverse
ation pathways (R2). Even for the complex spin relaxati
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networks occurring in proteins, cross-correlation experim
can be designed so that the relaxation can be described
high degree of accuracy as a two-spin system. In fact, suR2

cross correlations “isolate” a restricted set of relaxation m
anisms out of a complex relaxation matrix. These prope
thus allow detailed insight into the structure and dynamic
labeled proteins, and recent years have seen a flurry of
measurements, many of which measureR2 interference effec
of CSA and dipolar interactions (2–9).

Recently interest has arisen to also measureR1 interference
effects of CSA and dipolar relaxation, mostly to obtainR2/R1

ratios for the15N–1H CSA-DD cross correlations in protein
Such ratios should allow a valuable estimate of the spe
density functions independent of15N CSA tensor values an
conformational dynamics (Rex) relaxation. As described ea
by Torchia and co-workers (10), R1 interference effects a
much more difficult to measure thanR2 interference rates. F
instance, the15N–1H dipolar/15N CSA longitudinal crosscor-
relation as measured from the time-dependence of 2NZHZ

N

order is strongly affected by crossrelaxation of the 1H spin
with other 1H spins, which is for proteins a dominant effe
(Why this does not influenceR2 cross correlations as measu
from the time-dependence of 2N1HZ coherence is recalled
detail in Refs. (3) and (9)). In other words,R1 cross correla-
tions do not fully isolate a restricted set of relaxation me
nisms and cannot be measured in straightforward mann
spin-dense systems such as proteins. Moreover, NH mo
for which the amide protons are in relatively rapid excha
(1-s time scale) with the solvent can also not be describe
a simple two-spin system.

Here we present a theoretical description of the relax
behavior of a three-spin system which serves as a model f
15N–1H system in contact with another1H relaxation and mas
exchange bath. On the basis of the theoretical investigatio
suggest that with the measurement of four observables
individual proton–proton cross-relaxation and exchange r
the 15N R1 relaxation rate, the multiexponential 2NZHZ

N decay
nd multiexponential 2NZHZ

N buildup), it is possible to obta
the longitudinal 15N–1H CSA-DD cross-correlation rates
iterative fitting of the latter data according to coupled dif
ential equations. Our analysis indicates that reliableR1 cross
1090-7807/00 $35.00
Copyright © 2000 by Academic Press
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176 COMMUNICATIONS
correlation rates can be measured with this approach for
protonated proteins while mass exchange mechanisms s
amide proton exchange with the solvent are taken into ac
as well. We have applied our procedure with experimental
for the microbial ribonuclease binase (12.3 kDa).

Our method, in which the1H–1H cross relaxation ismea-
sured,complements recent work by Palmer and co-wor
(11), who propose toattenuatethe 1H–1H cross relaxation i
ongitudinal 15N–1H CSA-DD cross correlation by deuterat
of all nonamide protons, and by Bodenhausen and co-wo
(12) who propose toattenuatethe 1H–1H cross relaxation b
off-resonance spin-locking.

THEORY

Following Goldman (13) we use the master Eq. [1] f
relaxation in the interaction representation as derived
Abragam (14) to calculate the relaxation behavior of differ
pin orders in a three-spin system,

d

dt
^A& 5 2

1

2 O
i
E

2`

1`

Tr$@@A, H i~0!#, H i~t!#~s 2 sL!%dt,

[1]

hereA, s, sL, andHi are, respectively, the spin operator wh
evolution is to be evaluated, the reduced density operator for th
system, its value at equilibrium state, and the interaction H
tonian between the spin system and the bath responsible f
relaxation of the spin system. Here, Tr indicates taking the
over the spin system. The bar in [1] represents ensemble av

We evaluate the dynamics of the spin system consistin
an amide proton, HN, amide nitrogen, N, and a third proto
HQ, that may represent all other protons, including solvent.
interaction HamiltonianH i for this system,

Hi 5 H CSA
N 1 H CSA

H N
1 H CSA

H Q
1 H DD

NH N
1 H DD

NH Q
1 H DD

H NH Q
, [2]

includes CSA interactions for all spins (HCSA
N , HCSA

HQ

, andHCSA
HN

)
and the DD interactions between any two of the three s
(HDD

NHN

, HDD
NHQ

, andHDD
HN HQ

), where

HCSA
X 5

1

3
gX~s i

X 2 s '
X !j O

q522

12

Y2
0~V9!Y2

2q~V~t!!T2
q~B0, X!

[3a]

nd

H DD
XY 5 2gXgY\r XY

23j O
q522

12

Y2
0~V9!Y2

2q~VNH N(t))T2
q(X, Y),

[3b]
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where the normalization constantj 5 (24p/5) ; g’s are the
gyromagnetic ratios;r ’s the averaged internuclear distanc
Y2

2q andT2
2q second-rank spherical harmonics tensors; N,N,

and HQ single spin operators;V’s the Euler angles, andB0 the
external static field. TheY2

0 (V9) in Eq. [3] is the only remain-
ng component of Wigner’s rotation matrix describing
orresponding directions of the CSA or DD interactions
olecular-fixed frame. The other components are disrega
s usual according to group-theoretical arguments. For the
f simplicity we have assumed that all the three CSAs
xially symmetric.
The longitudinal relaxation behavior of N, HN, and HQ is

ompletely described in a space spanned by the basis sez,
HZ

N, HZ
Q, 2NzHZ

N, 2NzHZ
Q, 2HZ

NHZ
Q, 4NzHZ

NHZ
Q} of longitudinal

one-, two-, and three-spin orders. The dynamics of indivi
spin orders is dominated by dipolar and CSA autorelaxa
processes (rX). Transfer of population between spin order
the same rank is governed by dipolar cross-relaxation
chemical exchange processes (sXY). Transfer of populatio
between spin orders of different ranks is caused by dip
CSA (hN2NHN

DD2CSA), which we want to obtain, and dipolar/dipo
cross-correlation processes. The differential equations go
ing all of these processes are represented by the com
cross-relaxation/cross-correlation matrix in Table 1, obta
by straightforward but tedious algebra. We have neglecte
the zero-quantum terms such as N1H2

N, N2H1
N, and H2

QH1
N

because no spin-locking field was applied during the relax
delay. The derived formulas relating the various autore
ation, cross-relaxation, and cross-correlation rates to the
tral density functions are given in the Appendix; the long
dinal cross-correlation rate of interest is given by

h N2NH N
DD2CSA 5

m0\B0gHgN
2

4pr NH
3 ~s i

N 2 s '
N! P2~cosu !J~vN!, [4]

where the symbols have their usual meanings. The theor
values of all elements of the above matrix were compute
a three-spin geometry corresponding to ana-helical conforma
tion in deuterated proteins (see Fig. 1), using a correlation
of 6.0 ns, which corresponds to that of binase. The valu
Y2

0(V9) in Eq. [3] were assumed to be 1 in the calculation.
spectral density functionJ(v) was assumed to be 2tc/(5(1 1
v2tc

2)). The results of this calculation are shown in TableIt
is clear that the complete relaxation matrix for the longitud
spin orders can for this system be approximated, to very
extent, in a block-diagonal form on the subspaces {HZ

N, HZ
Q},

{2H Z
NHZ

Q}, and {Nz, 2NzHZ
N, 2NzHZ

Q, 4NzHZ
NHZ

Q}. As we cur-
rently are interested in dipole/CSA cross correlations, only
last subspace is relevant and the matrix describing its com
dynamics can be reduced to a 43 4 size. As described belo
we center our experiments around measuring the creatio
relaxation of 2NzHZ

N two-spin order. In such experimen
4NzHZ

NHZ
Q spin order is created as a second-order process
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177COMMUNICATIONS
through1H–1H cross relaxation 2NzHZ
N3 2NzHZ

Q, followed by
(mostly) 1H–1H dipolar cross correlation 2NzHZ

Q3 4NzHZ
NHZ

Q.
Consequently, when short relaxation times are used in bo
experiment monitoring the decay of 2NzHZ

N (100 ms) and th
experiment monitoring the magnetization transfer from NZ to
2NzHZ

N (400 ms), the amount of 4NzHZ
NHZ

Q spin order create
can be neglected and does not contribute to the dynamics
system. Accordingly, the cross-relaxation/cross-correlation
namics of the subspace {Nz, 2NzHZ

N, 2NzHZ
Q} can be describe

by a 33 3 matrix or the following closed set of three eq
ions:

d

dt
^Nz~t!& 5 2rN^Nz~t! 2 NZ~eq!&

1 h N2NH N
DD2CSA^2HZ

NNz~t!&

d

dt
^2HZ

NNz~t!& 5 2~rN 1 sH N2H Q!^2HZ
NNz~t!&

1 h N2NH N
DD2CSA^Nz~t! 2 NZ~eq!&

1 sH N2H Q^2HZ
QNz~t!&

d

dt
^2HZ

QNz~t!& 5 2~rN 1 rH Q!^2HZ
QNz~t!&

1 sH N2H Q^2HZ
NNz~t!&, [5]

hererN is the longitudinal relaxation rate of amide nitrog
(NZ), hN2NHN

DD2CSA the longitudinal cross-correlation rates mea-
ing the interference between the DD interaction of am
nitrogen with its attached proton and the CSA of amide n
gen with the external field that we wish to obtain,rHQ the
longitudinal relaxation rate of the second proton (HQ), and
sHN 2HQ the longitudinal cross-relaxation or exchange rat
two protons. The autorelaxation rate of the two-spin-o
2NzHZ

N should berN 1 rHN. However, we have replaced it w
rN 1 sHN 2HQ because for large biomolecules the theore
value ofrHN is very close to thesHN 2HQ value. We have adopte

TAB
The Complete Longitudinal Relaxation Matrix for a Three-Sp

Cross-Relaxation Rates, and Cross-Correlation Rates Base

Nz HZ
N HZ

Q 2NzHZ
N

Nz rN sN2HN sN2HQ hN2NHN
DD2CSA

HZ
N rHN sHN2HQ hHN2NHN

DD2CSA

HZ
Q rHQ 0

2NzHZ
N r2NHN

2NzHZ
Q

2HZ
NHZ

Q

4NzHZ
NHZ

Q

Note.The expressions for these rates are given in the Appendix.
he
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the set of Eqs. [5] also as the basis for the extraction o
longitudinal cross-correlation ratehN2NHN

DD2CSA in fully protonated
proteins. In such systems every backbone amide proton
acts with many other protons including solvent. The resu
complete cross-relaxation/cross-correlation matrix beco
obviously intractable with thousands of terms even for s
proteins. We have therefore assumed that the effect of all
protons was additive. As a result we replace the proton HQ in
Eqs. [5] with one pseudo-proton to mimic the effects of all
others, and therQ approximates its effective longitudinal-
axation rate.

On the basis of the above theoretical considerations
esign the following protocol to obtain the desired longitud
ross-correlation rateshN2NHN

DD2CSA. The autorelaxation raterN is
measured using a standard15N relaxation experiment. Th
cumulative cross-relaxation ratesHN 2HQ can be obtained fro
the initial decay rates of the diagonals in a 3D15N-resolved
NOESY-HSQC experiment, as described below. The dyna
of 2NzHNz decay and 2NzHNz buildup is measured with tw
experiments. Their multiexponential time profiles are fi
according to Eqs. [5] using the appropriate initial conditio
The fitting procedure yields the value forhN2NHN

DD2CSA and also th
cumulative longitudinal relaxation raterHQ.

1
System N, HN, and HQ, Accounting for Autorelaxation Rates,
n Dipolar/Dipolar and Dipolar/CSA Interference Effects

2NzHZ
Q 2HZ

NHZ
Q 4NzHZ

NHZ
Q

N2NHQ
DD2CSA 0 dN2NHNHQ

DD2DD

hHN2HN HQ
DD2CSA dHN2NHN HQ

DD2DD

HQ2NHQ
DD2CSA hHQ2HN HQ

DD2CSA dHQ2NHN HQ
DD2DD

2NHNHQ
D2DD 1 sHN2HQ dHN2NHN HQ

DD2DD 1 sN2HQ hN2NHQ
DD2CSA 1 hHN2HN HQ

DD2CSA

NHQ dHQ2NHN HQ
DD2DD 1 sN2HQ hN22NHN

DD2CSA 1 hHQ2HN HQ
DD2CSA

r2HNHQ hHQ2NHQ
DD2CSA 1 hHN2NHN

DD2CSA

r4NHNHQ

FIG. 1. A three-spin system consisting of an amide nitrogen (15N), its
valence-bonded amide proton (1HN), and another proton (1HQ) in a-helical
onformation. The distances shown here between the15N and1HQ and betwee

1HN and1HQ were the averages of 10 such distances in 0.8-Å resolution
tructure of Crambian (PDB code cbn), respectively. The1HQ was the proto

closest to both the amide15N and 1HN in the helical regions of deuterat
proteins.
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APPLICATION

NMR Experiments

All spectra were acquired on a Bruker AMX500 NM
spectrometer using 0.9 mM15N-labeled binase in 20 m
sodium acetate with 90% H2O and 10% D2O, pH 5.2. The
resonance assignments were extended from the literature15).

The longitudinal autorelaxation raterN of amide nitroge
(15N) was measured with a standard 2D heteronuclear N
experiment using inversion recovery (10). A train of 180°
pulses (5-ms delay between two consecutive ones) was a
during the relaxation delay to eliminate the magnetiza
transfer from Nz to 2NZHZ

N with ratehN2NHN
DD2CSA, comparable torN

(Table 2). Consequently, the decay curves for different
dues can be fitted to single exponentials, the results serv
a fixed parameter for Eqs. [5].

The decay of longitudinal two-spin-order 2NZHZ
N for the

ndividual residues of binase was monitored by the p
equence shown in Fig. 2A. No additional pulses were ap
uring the relaxation delay. The longest relaxation delay
et to 100 ms. These decays cannot be fitted to single
entials and are fitted according to Eqs. [5].
The magnetization transfer from Nz to 2NZHZ

N by hN2NHN
DD2CSA

for the individual residues of binase was monitored by

TAB
The Auto Longitudinal Relaxation Rates of One-Spin, Two

and the Cross-Correlation Rates of a

Nz HZ
N HZ

Q

Nz 2.60 0.06 ,0.001
HZ

N 0.99 20.88
HZ

Q 0.90
2NzHZ

N

2NzHZ
Q

2HZ
NHZ

Q

4NzHZ
NHZ

Q

Note.The calculations were based on the following values:B0 5 500 MH
to be axially symmetric).DsH 5 10 ppm (CSA of amide proton1H, assumed t
italic for cross relaxation between protons, and bold italic for cross corr

FIG. 2. (A) Pulse sequence for monitoring the decay of two-spin-ord
ars indicate solvent-selective pulses. Lower bars represent spin-lockin
omposite 180° pulse (908y–1808x–908y) was applied during the15N evoluti
.55 ms and Tn 5 2.67 ms. The phase cycling was:f 1 5 y, y, 2y, 2y; f 2

x, 2x, x, x, 2x. States–TPPI was applied tof2 to achieve quadrature det
1900 Hz for15N, respectively. Heteronuclear decoupling during data acq
cheme was used to suppress the solvent resonance (25). The 15N evolution c

delays were 10, 15, 20, 30, 50, 75, and 100 ms. The number of scans
to 2NzHNz. The symbols have the same meaning as in (A) except for t
2x, 2x, 2x, 2x, 2x, 2x, 2x; f 3 5 x, x, y, y, 2x, 2x, 2y, 2y; f 4 5 y
etection in the indirect dimension. The time points for the relaxation d
ID. (C) Pulse sequences for the determination of therHN values, which corr

have the same meaning as in (A) except for the following. Prior to the
R
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n

i-
as

e
d
s
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e

pulse sequence shown in Fig. 2B. No RF pulses were ap
during the relaxation delay. The longest relaxation delay
set to 400 ms. These buildup curves cannot be represen
single exponentials and are fitted according to Eqs. [5].

The longitudinal cross relaxationsHN 2HQ of one amide pro-
ton with all of its neighbors, including amide proton exchan
can be measured from the initial decay of the diagonal pea
a carefully arranged 3D15N-resolved NOESY-HSQC expe-
ment (Fig. 2C) as a function of the NOE mixing time,tm, as
follows. Generalizing the Solomon equation for the am
proton HN that cross relaxes with many protons Hi and ex-
changes with the solvent HH2O, one has, neglecting proto
proton cross-correlation effects (16),

dHz
N~tm!

dtm
5 2@K H N,H2O

ex 1 O
i

rH N,H i#$Hz
N~tm! 2 Hz

N~eq!%

1 O
i

sH N,H i$Hz
i ~tm! 2 Hz

i ~eq!%

1 K H N,H2O
ex $Hz

H2O~tm! 2 Hz
H2O~eq!%, [6]

here the ratesrHN ,Hi and sHN ,Hi are the autorelaxation a
cross-relaxation rates due to dipolar interactions between

2
in-Order, and Three-Spin-Order and the Cross-Relaxation
ree-Spin System as Shown in Fig. 1

2NzHZ
N 2NzHZ

Q 2HZ
NHZ

Q 4NzHZ
NHZ

Q

22.01 0.07 0 20.14
0.01 0 20.008 0.008
0 0.001 20.007 20.002
3.45 21.02 0.008 0.06

3.50 0.06 22.02
0.12 0.02

2.57

1.74 T),tC 5 6.0 ns,DsN 5 170 ppm (CSA of amide nitrogen15N, assume
axially symmetric). The relative large values are shown in bold for longit

tion between DD and CSA of amide nitrogen and proton. The units are21.

NzHz. Narrow and wide bars denote 90° and 180° hard pulses, respectively
ulses of 1.0 ms. All pulses were applied with phasex unless specified otherwise.
The delays were tuned for the relaxation properties of binase as followst1 5
x, x, x, x, 2x, 2x, 2x, 2x; f 3 5 x, y, 2x, 2y; receiver5 x, 2x, 2x,
on in the indirect dimension. The spectral widths were 8333 Hz for pro
ition was achieved with a Waltz-16 composite pulse scheme. The WA
also have been measured as shown in (B). The time points for the rel

s 32 per FID. (B) Pulse sequence for monitoring the magnetization tran
following. The phase cycling was:f 1 5 x, 2x; f 2 5 x, x, x, x, x, x, x, x, 2x,
ceiver5 x, 2x, 2x, x. States–TPPI was applied tof4 to achieve quadratu
s were 50, 75, 100, 150, 200, 300, and 400 ms. The number of scans
ond to the cumulative amide proton cross-relaxation ratessHN2HQ. The symbol
adient G3, four solvent-selective square 45° pulses of approximately 5ms each
LE
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z (1
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G4
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16 per FID.
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(indicated by hatched boxes) were applied to restore the “water-up” condition.t1 5 2.75 ms.f 1 5 x, x, 2x, 2x; f 2 5 y, f 3 5 f 4 5 2y, 2y, y, y; f 5 5
x, 2x; receiver5 x, 2x, 2x, x. States–TPPI was applied tof1 andf5 to achieve quadrature detection in the indirect dimensions. The phase programf2 was
incremented by 180° for each 90°f1 States–TPPI incrementation, and programsf3 and f4 were incremented by 180° for every two 90° States–T
incrementations off1 to restore water-up conditions. The gradients G1, G2, G3, G6, and G7 were 1,21, 12, 40, and 40 G/cm, respectively. The gradients
and G5 are optional and serve to suppress radiation damping for long15N evolution times, but were not used in this study. The delaysd1 andd2, together with
thep pulses in the indirection evolution times, serve to suppress first-order phase shifts and were set to the initial delayt 1 1 15N p-pulse width and initial dela
t 2 1 1H p-pulse length, respectively. The time points for the relaxation delays were 10, 15, 20, 30, 50, 75, and 100 ms. The number of scans was
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180 COMMUNICATIONS
H and H, respectively, andKHN ,H2 O the amide-proton–solve
exchange rate.

The initial dynamics of diagonal peaks {HN} in NOESY
spectra corresponds to that of selectively inverted reson
{H N}, with all other magnetizations {Hi} at their equilibrium
values (17). Accordingly, for small values of the NOE mixin
ime, we have Hz

i(tm ' 0) 2 Hz
i(eq) > 0, and consequentl

no contribution of the second term of Eq. [6]. If the N
experiment is arranged such that the water signal behave
any other proton, i.e., that it is not saturated and not affecte
radiation damping, it can also be considered at its equilib
value, Hz

H2O (tm ' 0) 2 Hz
H2O(eq) > 0, and consequently th

third term of Eq. [6] can also be neglected. Thus one has
the initial decay of any diagonal peak is described by a s
exponential with the rate constantKHN ,H2 O

ex 1 ¥ i rHN ,Hi. In the
large molecule limit, the autorelaxation ratesrHN ,Hi and cross
relaxation ratessHN ,Hi are equal and opposite. Accordingly
cross-relaxation ratesHN 2HQ in Eq. [5] is equal to2RD, the
initial decay rate of the diagonal of the NOESY experime

RD 5 2sH N2H Q 5 K H N,H2O
ex 2O

i

sH N,H i. [7]

To obtain these conditions, a NOESY experiment was
signed such that no presaturation was used and such th
solvent signal behaves as any other proton signal (see Fig
The latter is achieved by applying two weak gradients
opposite signs during the NOE mixing time, preventing r
ation damping, but maintaining coherence. It was assured
water is in1z during detection irrespective of the phasecyc
by always restoring the solvent magnetization to1z prior to
the fast-HSQC sequence (18), using a sequence of four wat
selectivep/4 pulses that are phase cycled to cumulati
generate 0,p/ 2(y), p( y), and 3p/4(y) pulses as needed
follow the phase and quadrature cycling of the first pro
pulse of the sequence. This single experiment yields exc
water suppression, with “water-up” for all practical NOE m
ing times in the range of 10–200 ms, and is also recomme
for use in standard applications. Proton zero-quantum c
ences of the type (2I xSy 2 2I ySx) will be present after the sho
NOE mixing time, and cannot, as is well known, be ph
cycled out or purged by the gradient after the selective pu
The NOESY-FHSQC sequence converts these coherence
ZZ-orders at acquisition time that do not contribute to
diagonal signal as can be verified by standard product ope
algebra. Accordingly, no disturbance of the single-expone
decay behavior of the diagonals occurs.

As our current interest is to only monitor the initial de
rate of the large diagonal resonances, 3D datasets of exc
sensitivity and resolution could be acquired in as little as
each, using an older 500-MHz system. As such, the acqui
of a 3D s relaxation series with NOE mixing times of 10,
20, 30, 50, 75, and 100 ms took as long as any standar
relaxation experiment. After 3D processing, the initial diag
es
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peak decay profiles were fitted with a single exponential f
tion, yielding the desired sum of cross-relaxation and exch
rates, the results serving as a fixed parameter in Eqs. [5

Details describing further experimental conditions and
acquisition parameters for all experiments are given in
figure legends. All data were processed and analyzed wit
program NMRPipe (19).

he Iterative Fitting Procedure

The iterative fitting procedures were developed to extrac
nknown longitudinal relaxation raterQ of the pseudo-proto

HQ and the longitudinal cross-correlation ratehN2NHN
DD2CSA. First,rQ

was estimated from the best fit of the solution of Eq. [5] to
data of the experiment monitoring the decay of the two-s
order 2NZHZ

N using the initial conditions {Nz(0)5 0;
2NZHZ

N(0) 5 the measured initial value; 2NZHZ
Q(0) 5 0}. The

three equations in (5) were solved numerically with the Pr
gram Mathematica 3.0 (Wolfram Research). The fit was
formed by exhaustively varyingrQ andhN2NHN

DD2CSA, first within a
large range and then gradually narrowing the range down
by step until the precision was equal to or better than
experimental uncertainties of the original experimental d
We found that the fit was very sensitive to the values of
cumulative autorelaxation ratesrQ (see Results and Discu-
ion). However, this fit was not very sensitive to the value
he cross-correlation ratehN2NHN

DD2CSA.
In contrast, we found that the fitting to the experim

monitoring the magnetization transfer from Nz to 2NZHZ
N was

very sensitive to the value of the cross-correlation ratehN2NHN
DD2CSA,

as expected, but much less so to the value of the autorela
rate rQ. Thus, withrQ values as known parameters obtai
from the first fit, the cross correlation rateshN2NHN

DD2CSA could be
obtained to high precision by best fit of Eq. [5] to the Nz3
2NZHZ

N experiment with the initial conditions {2NZHZ
N(0) 5 0;

NZHZ
Q(0) 5 0}. Here, the initial value for Nz(0) was exhau-

ively varied together withhN2NHN
DD2CSA.

This two-step fitting procedure was tested with data s
lated numerically according to Eqs. [5] with known parame
and was found to give very accurate results. In fact, it
much more robust than a simulated annealing program tha
also written by us to accomplish the same fitting procedu
a more automatic fashion.

RESULTS AND DISCUSSION

We have applied the iterative fitting procedure deta
above to binase, a microbial ribonuclease,M r 12.3 kDa. Nine-
teen well-resolved peaks were picked for testing the prot
The resulting cross-correlation rates are shown in Fig. 3C
average cross-correlation rate at 11.7 T is 2.3 s21, which
compares favorably with the computed rate of 2.0 s21 (Table 2)

sing standard parameters and a value of 6.0 ns for the
ional correlation time obtained from routine15N relaxation



rg
in

ail
ot

bles
en-

rting
any

to
e

n ue
ted
inase, which

m elation
r

181COMMUNICATIONS
experiments. The measured cross correlation rates vary la
in the range of 1.6–2.8 s21 and do not correspond to patterns
either hydrogen bonding or secondary structure. As is det
directly below, the large range of values observed cann

FIG. 3. A. (a) Representative experimental data of the15N T1 experimen
a single exponential decay curve. Thex-axis is the relaxation time in second

itrogen15N for 19 residues of binase. B. (a) Representative experimenta
R86 of binase and the fit to a single exponential decay curve. Thex-axis is t
rHN values of the amide protons for 19 residues of binase. C. (a) Repr

onitors the magnetization transfer from Nz to 2HNzNz and the fitting to th
ateshN2NHN

DD2CSA for 19 residues of binase.
ely

ed
be

attributed to statistical errors in the experimental observa
or errors in the fitting procedure. Our results are complem
tary to those of many other studies by several groups repo
determinations of different cross-correlation rates. For m

sing cross-correlation suppression (26), for residue R86 of binase and the fit
they-axis is the relative peak intensity. (b) The fittedrN (R1) values of the amid
ta of the relaxation in the 3D15N-resolved NOESY experiment (Fig. 2C) for resid

mixing time in seconds; they-axis is the relative peak intensity. (b) The fit
ntative experimental data of the experiment (Fig. 2B) residue R86 of b
lution of the Eq. [5] by the iterative procedure. (b) The fitted cross-corr
t, u
s;
l da
he
ese
e so
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such experiments, larger variations than expected are obs
as well. The explanations for this phenomenon vary f
ascribing a large range to the parameters of the static
tensors (6), variations in geometry (20), anisotropic local mo
ions (21), and, most recently, dynamic variations in the C
ensors and distances upon anisotropic local motion (22). Anal-
sis of the current data in structural and dynamical terms
hus have to await further developments of these theories
urpose of the present paper is only to provide a ro
rotocol to measure the longitudinal cross-correlation rate

he following we address the error propagation in the pr
ure. Subsequently we compare our method with that rec
ublished by Kroenkeet al. (11).

rrors Analysis

Errors in rN. The pulse train is the standard15N r mea-
surement does not eliminate the magnetization transfer
Nz to 4NZHZ

NHZ
Q by dipole/dipole cross correlation. Howev

the rate of such transferdN2NHN HQ
DD2DD can be calculated to b

relatively small, about 5% ofrN with the presence of one oth
proton (see Table 2), and should not affect the early parts o
relaxation curve. Fitting such a curve to a single expone
would yield an error inrN of at most 2.5%.

The uncertainty inrN due to the noise in the original exp-
mental data is small. The average signal-to-noise ratio
bout 100/2. Since the autorelaxation ratesrN were extracte

by best fitting of 12 data points to single exponential deca
curves, the uncertainty inrN is estimated to be less than 0.8
Combined with the error in neglecting thedN2NHN HQ

DD2DD terms, we
estimate that the error inrN is 3%.

Errors in sHN2HQ. The NOESY diagonal peaks were a
obtained with an average sensitivity of 100/2. With a fit to
data points the experimental uncertainty insHN 2HQ is less tha
1.0%. Potential sources of systematic errors in obtaining
cross-relaxation rates are discussed in the theoretical sec
this paper. We note that the decay curves cannot be d
guished from single exponentials even when extende
100-ms mixing times; nevertheless we have only fitted up
ms, to maintain the initial rate approximation. We estimate
the sum of experimental and systematic error in the de
values forsHN 2HQ is well below 10%.

Errors in the fitted parametersrQ andhN2NHN
DD2CSA. The exper-

imental uncertainties in the experiment monitoring the dec
2NzHNz was about 100/1 for the initial time point and 10
for the last of seven time points. The signal to noise ratio in
transfer experiment Nz to 2NzHNz was on average 100/5 f
seven time points. The experimental uncertainties of par
ters fitted to these data should thus be reduced by=7 com-

ared to the raw individual data points. The computati
ncertainties inrN, rQ, andhN2NHN

DD2CSA were estimated by samp
fitting procedures in which the other parameters and ob
ables were varied over their known uncertainty ranges.
found that a 3% error inrN contributes less than a 2% error
ved
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the final computedhN2NHN
DD2CSA value. It was observed that the er

in rQ is dominated by potential variations in the initial value
the 2NzHNz magnetization. We estimate on this basis an e
in rQ as large as 25% from the first step of the fitting proced
However, a 25% error inrQ introduces only a 2% error in th
desired cross-correlation ratehN2NHN

DD2CSA in the second fittin
procedure. To explain this more intuitively, we note tharQ

affects the time dependence of 2NzHNz only indirectly through
the decay of the 2NzHQz term (see Eqs. [5]). In particular, f
the 2NzHNz decay experiment, the 2NzHQz term has to b
created first from 2NzHNz before it can contribute “back”
2NzHNz, a process that is unimportant if the relaxation tim
only 100 ms as used. The influence of the HQ relaxation is eve
more remote on the transfer experiment from Nz to 2NzNz
(400 ms); it can be classified as a secondary to seco
effect: first, 2NzHNz is created from Nz, then 2NzHQz is
created from 2NzHNz. Only 2NzHQz is directly affected byrQ.
The largest computational error in the cross-correlation
hN2NHN

DD2CSA was caused by the uncertainties in the initial value
Nz used as the input parameter in the second fitting proce
A reasonable estimate of 5% error in the initial value of
would introduce 5% error inhN2NHN

DD2CSA. In total, we thus estima
that the uncertainties inhN2NHN

DD2CSA amount to 15% on averag
These cumulative experimental and computational unce
ties can thus not account for the large spread of cross co
tion rates obtained (650%).

Comparison with Other Work

As detailed above in the theoretical background, the re
ation behavior of any spin residing in the complicated netw
of spins, especially in a protonated protein sample, may n
approximated by a two-by-two matrix without introduc
substantial errors. For example, by fitting the experimental
of residue R86 of binase to a two-by-two matrix, we ob
hN2NHN

DD2CSA of 3.32 s21. By contrast, it was found to be 3.10 s21 by

FIG. 4. The fitted cross-correlation rateshN2NHN
DD2CSA of 19 residues of binas

as obtained by our iterative protocol (filled squares) compared with tho
determined with the protocol described by Kroenkeet al.(11) (filled triangles)
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our iterative fitting procedure. To further explore this exp
mentally, we have measured and computed the longitu
cross-correlation rateshN2NHN

DD2CSA for protonated binase accordi
o the protocol described by Kroenkeet al.(11). The results ar
ncluded in Fig. 4. As is expected for this protonated pro
hese rates do differ substantially from the results obtained
ur method. While we have not been able to find any cor

ion between thevaluesof the cross-correlation rates and
tructure of binase (see above), we do find a substantia
elation between thedifferencesin the rates obtained accordi
o our methods and those as determined by the metho
roenkeet al. (11). As seen in Table 3, the largest differen
ccur for residues located inb-sheet and those involved

rapid amide proton exchange. This can be rationalized b
fact that inb-sheet, amide protons are very close to thea-pro-
tons of the preceding residues (2.2 Å); as such the relax
dynamics of the amide proton is dominated by dipolar in
action with this single proton. The relaxation behavior is
expected to deviate strongly from the isolated spin approx
tion. Large differences are also expected for amide proto
rapid exchange with the solvent, where a two-spin descri
cannot be a good approximation. The differences appea
strong for residues ina-helices and loops; this can be ra

TABLE 3
The Difference in Longitudinal Cross-Correlation Rates hN2NHN

DD2CSA

as Determined with the Iterative Fitting Procedure Proposed Here
and with the Method Proposed by Kroenke et al. (11)

Residue DhN2NHN
DD2CSA (s21) Structure Exchang

I24 1.1 Loop Yes
S27 20.4 Loop/helix No
S30 20.4 Loop/helix Yes
A36 20.1 Loop No
A45 0.6 Helix/turn No
G51 1.0 Beta Yes
R61 0.1 Loop No
L62 0.5 Loop No
E72 0.9 Beta Yes
R82 0.5 Loop No
R86 0.8 Beta No
K97 0.9 Beta No
T98 0.9 Beta No
T99 20.2 Loop a

H101 0.3 Loop No
A103 0.1 Loop No
F105 20.6 Loop b

T106 0.4 Beta No
R109 1.3 Beta c

Note.The column “Structure” characterizes the local structure in the pr
binase (G. Dodson, personal communication); the column “Exchange”
cates whether amide proton exchange on the 100-ms timescale was o
for this moiety.

a Not Determined; X-ray structure shows H-bonding.
b Not determined; X-ray structure shows solvent exposure.
c Not determined; C-terminal residue.
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nalized by the fact that the relaxation is not dominated
single spin but by several other amide protons and m
side-chain protons. In that case, magnetization transferred
amide proton to such protons rapidly diffuses in the matrix
the process contributes predominantly to the autorelax
terms.

Perdeuteration of the amino acid side chains can of co
alleviate some of the multiple spin effects. This method
proposed by Kroenkeet al. (11). However, cross relaxatio

etween amide protons, dominant ina-helical segments, an
exchange with solvent cannot be accounted for with suc
approach. Alternatives to deuteration exist, as cross relax
between amide and aliphatic protons can be quenched by
or selective decoupling of the aliphatic protons (23, 24). But, as
above, it is not possible to quench the amide–amide p
cross relaxation with this method. In principle, amide–am
proton cross relaxation can be attenuated strongly in the
gant approach described by Bodenhausen and co-worker12).

here,1H–1H cross relaxation is canceled by off-resonance1H
pin-locking at an average angle of 35.3°. In the large-m
ule motional limit complete suppression should occur at
isely this angle (NOESY-ROESY cancellation). Howe
mide proton exchange effects cannot be canceled b
pin-locking schema, while RF offsets make it difficult to m
he ideal locking angle for all resonances simultaneously

Our method to obtain the longitudinal cross-correlation r
hN2NHN

DD2CSA, albeit also an approximation, can be used on
protonated proteins. A drawback is that the data must be
carefully to a set of coupled differential equations. This ma
a small price to pay in order to also obtain information
residues involved in relatively fast amide proton excha
Many times such residues are located in loop regions whic
often the most interesting from a dynamical as well as f
tional perspective.

APPENDIX

The various relaxation rate constants in Table 1 were de
from Eqs. [1]–[3] and are

rN 5 dNH
2 ~6J~vN! 1 2J~vH 2 vN! 1 12J~vH 1 vN!!

1 dNQ
2 ~6J~vN! 1 2J~vQ 2 vN!

1 12J~vQ 1 vN!! 1 CN
26J~vN!

rH N 5 dNH
2 ~6J~vH! 1 2J~vH 2 vN! 1 12J~vH 1 vN!!

1 dHQ
2 ~6J~vH! 1 2J~vH 2 vQ!

1 12J~vH 1 vQ!! 1 CH
26J~vH!

rH Q 5 dNQ
2 ~6J~vQ! 1 2J~vQ 2 vN! 1 12J~vQ 1 vN!!

1 dHQ
2 ~6J~vH! 1 2J~vH 2 vQ!

1 12J~vH 1 vQ!! 1 CQ
26J~vQ!

in
i-
rved
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r2NHN 5 dNH
2 ~6J~vN! 1 6J~vH!! 1 dHQ

2 ~6J~vH!

1 2J~vH 2 vQ! 1 12J~vH 1 vQ!!

1 dNQ
2 ~6J~vN! 1 2J~vQ 2 vN!

1 12J~vQ 1 vN!! 1 CN
26J~vN! 1 CH

26J~vQ!

r2NHQ 5 dNQ
2 ~6J~vN! 1 6J~vQ!! 1 dHQ

2 ~6J~vH!

1 2J~vH 2 vQ! 1 12J~vH 1 vQ!!

1 dNH
2 ~6J~vN! 1 2J~vH 2 vN!

1 12J~vH 1 vN!! 1 CN
26J~vN! 1 CQ

26J~vQ!

r2HNH Q 5 dHQ
2 ~6J~vH! 1 6J~vQ!! 1 dNQ

2 ~6J~vQ!

1 2J~vN 2 vQ! 1 12J~vN 1 vQ!!

1 dNH
2 ~6J~vH! 1 2J~vH 2 vN!

1 12J~vH 2 vN!! 1 CH
26J~vH! 1 CQ

26J~vQ!

r4NHNH Q 5 dHN
2 ~6J~vN! 1 6J~vH!!

1 dHQ
2 ~6J~vH! 1 6J~vQ!!

1 dNQ
2 ~6J~vN! 1 6J~vQ!!

1 CH
26J~vH! 1 CQ

26J~vQ! 1 CN
26J~vN!

sN2H N 5 dNH
2 ~12J~vH 1 vN! 2 2J~vH 2 vN!!

sN2H Q 5 dNQ
2 ~12J~vQ 1 vN! 2 2J~vQ 2 vN!!

sH N2H Q 5 dHQ
2 ~12J~vH 1 vQ! 2 2J~vH 2 vQ!!

h N2NH N
DD2CSA 5 2CNdNHP2~cosuN2NH!6J~vN!

h N2NH Q
DD2CSA 5 2CNdNQP2~cosuN2NQ!6J~vN!

h H N2NH N
DD2CSA 5 2CHdNHP2~cosuH N2NH!6J~vH!

h H N2H NH Q
DD2CSA 5 2CHdHQP2~cosuH N2HQ!6J~vH!

h H Q2NH Q
DD2CSA 5 2CQdNQP2~cosuH Q2NQ!6J~vQ!

h H Q2H NH Q
DD2CSA 5 2CQdHQP2~cosuH Q2HQ!6J~vQ!

d N2NH NH Q
DD2DD 5 2dNHdNQP2~cosuNQ2NH!6J~vN!

d H N2NH NH Q
DD2DD 5 2dNHdHQP2~cosuHQ2NH!6J~vH!

d H Q2NH NH Q
DD2DD 5 2dNQdHQP2~cosuNQ2HQ!6J~vQ!

in which

dNH 5 2Î1

8

m0

4p
gHgN\r NH

23,

dNQ 5 2Î1

8

m0

4p
gQgN\r NQ

23,

dHQ 5 2Î1

8

m0

4p
gHgQ\r HQ

23,
CN 5 Î 1

18
gNB0DN,

CH 5 Î 1

18
gHB0DH,

CQ 5 Î 1

18
gQB0DQ,

J~v i! 5
2

5

tc

1 1 ~v itc!
2 ,

vN 5 gNB0, vH 5 gHB0 and vQ 5 gQB0.

The various parameters have their usual meanings, thatm0

is the permeability of free space,\ is Planck’s constant divide
by two timesp, g i is the gyromagnetic ratio for nucleusi , r ij

is the distance between nucleii andj , B0 is the static magnet
field, D i is the (axial) chemical shift anisotropy of nucleui ,
P2( x) 5 (3x2 2 1)/ 2, u i2ij is the angle between the princip
axis of the CSA tensor of nucleusi and the vector betwee

uclei i and j , u ij 2kl is the angle between the two internucl
vectorsij andkl.
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